Matching Modulo Associativity and Idempotency Is NP-Complete

نویسندگان

  • Ondrej Klíma
  • Jirí Srba
چکیده

We show that AI–matching (AI denotes the theory of an associative and idempotent function symbol), which is solving matching word equations in free idempotent semigroups, is NP-complete. Note: this is a full version of the paper [9] and a revision of [8].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unification and Matching Modulo Nilpotence

We consider equational uniication and matching problems where the equational theory contains a nilpotent function, i.e., a function f satisfying f(x;x) = 0 where 0 is a constant. Nilpotent matching and uniication are shown to be NP-complete. In the presence of associativity and commutativity, the problems still remain NP-complete. But when 0 is also assumed to be the unity for the function f, t...

متن کامل

Unication Problems Modulo a Theory of Until

We refer to this equational theory as W . We came across these axioms while studying identities or equivalences in Linear Temporal Logic (LTL) — a logic for reasoning about time with the “until” operator U , but without the “next-time” operator ©. It is not hard to see that the until operator U satisfies these identities. However, note that there are other models for these identities as well: t...

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

Theorem Proving modulo Associativity

We present an inference system for rst-order constrained clauses with equality modulo associativity (A). Our procedure is refutationally complete and reduces to Knuth-Bendix completion modulo A in the equational case. As an essential ingredient we present the rst |as far as we know| A-compatible reduction ordering total on the ground A-congruence classes.

متن کامل

Anti-pattern Matching Modulo

Negation is intrinsic to human thinking and most of the time when searching for something, we base our patterns on both positive and negative conditions. In a recent work, the notion of term was extended to the one of anti-term, i.e. terms that may contain complement symbols. Here we generalize the syntactic anti-pattern matching to anti-pattern matching modulo an arbitrary equational theory E ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000